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Pathophysiology of trauma-induced
coagulopathy: disseminated intravascular
coagulation with the fibrinolytic phenotype
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Abstract

In severe trauma patients, coagulopathy is frequently observed in the acute phase of trauma. Trauma-induced
coagulopathy is coagulopathy caused by the trauma itself. The pathophysiology of trauma-induced coagulopathy
consists of coagulation activation, hyperfibrino(geno)lysis, and consumption coagulopathy. These pathophysiological
mechanisms are the characteristics to DIC with the fibrinolytic phenotype.
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Background
In severe trauma patients, coagulopathy is frequently
observed in the acute phase of trauma, with profound
effects on outcome [1–7]. This coagulopathy is caused
by multiple factors associated with the trauma itself as
well as certain interventions [8–12] and has been de-
scribed with various terms. In this manuscript, we refer
to the coagulopathy caused by diverse trauma-associated
factors as “trauma-associated coagulopathy” and the coag-
ulopathy caused by the trauma itself as “trauma-induced
coagulopathy” (Fig. 1).

Inconsistencies in the acute coagulopathy of trauma
shock theory
Coagulation suppression by activated protein C?
In the acute coagulopathy of trauma shock (ACoTS)
theory, trauma-shock stimulates release of soluble throm-
bomodulin (TM) from endothelial cells [13, 14]. Soluble
TM binds to thrombin to form a thrombin-TM complex,
which activates protein C [13, 14], which in turn sup-
presses prothrombinase complex (factor Va-factor Xa
complex) activity and thrombin formation [13, 14].
However, TM is a receptor of thrombin and protein C

on the endothelial cell surface and regulates the coagula-
tion and complement system [15]. Soluble TM is formed

via the limited proteolysis of TM by neutrophil elastase
on the endothelial cell surface [16, 17], but it has not
been confirmed that soluble TM is actively secreted by
endothelial cells. However, the level of soluble TM
correlates with the degree of endothelial injury [16, 17].
Furthermore, soluble TM has only 20% of activity of
normal TM on the endothelial cell surface [18]. Under
these circumstances, the anticoagulant property of the
endothelium is impaired [16, 17]. Consequently, total
anticoagulant activity of TM in vessels is impaired in
the acute phase of trauma [17].

Hyperfibrinolysis by degradation of plasminogen activator
inhibitor?
In the ACoTS theory, activated protein C decomposes
plasminogen activator inhibitor (PAI) [13]. Because PAI
suppresses fibrinolysis, PAI degradation accelerates
fibrinolysis [13].
However, activated protein C level does not increase,

because, as mentioned above, total TM activity in the
vessel is impaired [17]. Furthermore, plasma PAI level
does not increase immediately following trauma [19].
Chapman et al. [19] indicated that total plasma PAI in
severe trauma patients with hyperfibrinolysis did not
increase compared to that in healthy controls. Therefore,
PAI degradation does not appear to play a significant
role in the pathogenesis of hyperfibrinolysis in the acute
phase of trauma [17, 19].
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DIC phenotypes
We have repeatedly advocated that trauma-induced co-
agulopathy is a disseminated intravascular coagulation
(DIC) with the fibrinolytic phenotype [12, 20–22]. How-
ever, it has been suggested that trauma-induced coagu-
lopathy does not imply DIC [13]. We consider that this
argument [13] might have resulted from a misunder-
standing about DIC phenotypes.
DIC is divided into two phenotypes, the fibrinolytic

and thrombotic phenotypes (Table 1) [20, 23, 24]. In
critical care settings, sepsis-induced DIC is frequently
observed, which is a representative of the thrombotic
phenotype [24] and characterized by suppressed fibrin-
olysis with micro-vessel thrombosis and ischemic organ
dysfunction [25]. However, trauma-induced coagulopa-
thy, which is considered a type of DIC with the fibrino-
lytic phenotype, is markedly different from DIC with
the thrombotic phenotype [12, 20, 21]. Coagulation ac-
tivation is observed in both phenotypes of DIC. Plasma
PAI suppresses fibrinolysis in DIC with the thrombotic
phenotype, whereas fibrino(geno)lysis is activated by
tissue-plasminogen activator (t-PA) in DIC with the

fibrinolytic phenotype [24, 25]. Therefore, although
sepsis-induced DIC does not lead to massive bleeding,
trauma-induced DIC (fibrinolytic phenotype) in the
acute phase of trauma contributes to massive bleeding
and death [1–4].

Pathophysiology of trauma-induced coagulopathy
Trauma-induced coagulopathy is generated by the follow-
ing pathophysiological mechanisms:

1) Coagulation activation

1. Procoagulants in the systemic circulation
2. Impairment of endogenous anticoagulant activity
3. Thrombin generation in the systemic circulation

2) Hyper-fibrino(geno)lysis

1. Acute release of t-PA-induced
hyperfibrino(geno)lysis

2. Coagulation activation-induced fibrino(geno)lysis

3) Consumption coagulopathy

Coagulation activation
Procoagulants in the systemic circulation
In severe trauma patients, particularly those with blunt
trauma, massive tissue injury accelerates thrombin gen-
eration [3, 5–7]. Previous studies showed spontaneous
thrombin generation in severe trauma by using non-
stimulation thrombin generation assays (Fig. 2) [26, 27].
Shortly after trauma, various procoagulants are ob-
served in the systemic circulation, which results in this
spontaneous thrombin generation (Table 2).
The platelet-derived microparticle is a well-known

procoagulant in the acute phase of trauma [28–30], and
several studies have indicated that various other cell-
derived microparticles are subsequently released into the
systemic circulation in the acute phase of trauma, such
as the leukocyte-derived [30, 31], erythrocyte-derived
[31], and endothelial-derived [30, 31] microparticles.
Tissue factor is exposed on the membrane of certain mi-
croparticles [30, 32, 33]. Therefore, elevation of tissue
factor antigen levels in the plasma reported in previous
studies [34, 35] may reflect increase of tissue factor-
exposing microparticles. Recently, brain-derived micro-
particles were detected in brain trauma animal models
[32, 33]. These brain-derived microparticles expressed
neuronal or glial cell markers, procoagulant phosphati-
dylserine, and tissue factor [32, 33]. In addition, other
injured organs may possibly release microparticles in
severe trauma.
Extracellular DNA and DNA-binding proteins, which

are well known as damage-associated molecular patterns,

Fig. 1 Trauma-associated coagulopathy and trauma-induced
coagulopathy. Trauma-associated coagulopathy is caused by
multiple factors and includes trauma-induced coagulopathy,
which is caused by trauma itself.

Table 1 Characteristics of DIC phenotypes

Fibrinolytic phenotype Thrombotic phenotype

Representative cause Acute phase of trauma Sepsis

Coagulation Activated Activated

Fibrinolysis Activated Suppressed

PAI-1 Low High

Clinical symptom Bleeding Organ dysfunction

DIC disseminated intravascular coagulation, PAI plasminogen
activator inhibitor
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are procoagulants observed in the systemic circulation
shortly after trauma [36–44]. Histone and histone-
complexed DNA fragments were detected in the systemic
circulation shortly after trauma and induced inflammation,
coagulation activation, and organ dysfunction [36, 37].
Furthermore, early release of high mobility group box
nuclear protein 1 (HMGB-1) [41–44] and mitochondrial
DNA [38–40] was observed in severe trauma and induced
inflammation and coagulation activation.
In penetrating trauma, especially stab wounds, there is

less tissue injury than that in blunt trauma. Therefore,
procoagulant production and coagulation activation are
far less than that immediately following blunt trauma.

Impairment of endogenous anticoagulant activity
In healthy subjects, coagulation activation is regulated
by endogenous anticoagulants, such as antithrombin and
the TM-protein C pathway. However, in severe trauma,
the endogenous anticoagulant activities are immediately
impaired and dysregulation of coagulation activation is
observed [1–6, 45, 46].
Many studies reported an early decrease in antithrombin

activity in severe trauma [1–4, 45], and thrombin gener-
ation assays showed a negative correlation between anti-
thrombin activity and generated thrombin, regardless of a
decrease in prothrombin concentration (Fig. 3) [26, 27].
This result indicates that decreased antithrombin activity
causes dysregulation of thrombin generation [26, 27].
Most of the TM in the body is found on vascular endo-

thelial cells [47]. Therefore, evaluation of anticoagulation
ability of TM is difficult. However, in severe trauma, endo-
thelial damage leads to release of the TM on vascular
endothelial cells as soluble TM in the systemic circulation
[5, 6, 46]. Furthermore, plasma concentration of protein C
decreases shortly after severe trauma [48–50]. Therefore,
the anticoagulation ability of the TM-protein C pathway is
impaired with resultant dysregulation of thrombin gener-
ation [2]. Although some investigators have advocated that
activated protein C increases and suppresses coagulation
[48–50], the increases in activated protein C (up to 10 ng/
mL) did not reach sufficient concentrations to inhibit
thrombin generation (70–80 ng/mL) [46, 50, 51].

Thrombin generation in the systemic circulation
The presence of procoagulants in the systemic circula-
tion together with impairment of endogenous anti-
coagulant activities induces coagulation activation and
thrombin generation [2, 27, 34, 35, 52, 53]. The half-life
of thrombin is very short, which precludes measurement
of plasma concentrations; therefore, other parameters
have been used as evidence of thrombin generation in the
systemic circulation. Soluble fibrin [2, 27] and fibrinopep-
tide A [34, 35, 52, 53] are considered to reflect active
thrombin because these markers are formed as a result of

Fig. 2 Spontaneous thrombin generation in severe trauma. a
Stimulated thrombin generation curve. Although the amount of
thrombin generation was lower in the Trauma group than the
control group, time to initiation of thrombin generation and time to
peak thrombin generation were shorter in the trauma group than
the control group, suggesting coagulation activation. b Non-stimulated
thrombin generation curve. Spontaneous thrombin generation was
observed in the trauma group but not in the control group,
demonstrating the presence of circulating procoagulants in the
systemic circulation of the trauma group. Blue line: control group; red
line: trauma group. (Cited as Figure 5 in our previous manuscript [27]
and adapted with permission from Wolters Kluwer Health, Inc.)

Table 2 Procoagulants circulating in the systemic circulation

Microparticles

Platelet-derived microparticle

Endothelial-derived microparticle

Leukocyte-derived microparticle

Erythrocyte-derived microparticle

Brain-derived microparticle

Extracellular DNA and DNA-binding proteins

HMGB-1

Mitochondrial DNA

Histone-complexed DNA fragments
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the direct action of thrombin on fibrinogen, which is
followed by fibrin formation. Early elevations of the
plasma concentrations of these markers are evidence of
thrombin generation in the systemic circulation and have
been repeatedly reported [2, 27, 34, 35, 52, 53].

Hyperfibrino(geno)lysis
In severe trauma, hyperfibrino(geno)lysis, which is a
combination of fibrinolysis and fibrinogenolysis, is fre-
quently observed [1–7, 27, 34, 35, 45, 48–50, 52, 53].
This hyperfibrino(geno)lysis is caused by acute release
of tissue-plasminogen activator (t-PA) and coagulation
activation.

Shock-induced hyperfibrino(geno)lysis
One of the key enzymes in fibrino(geno)lysis is t-PA. t-PA
catalyzes the cleavage of plasminogen to plasmin and thus
initiates fibrin and fibrinogen degradation in plasma [54].
The main source of plasma t-PA is the Weibel-Palade body
in the systemic vascular endothelial cells [54–56]. Severe
shock (tissue hypoperfusion) stimulates the endothelial
cells and induces release of t-PA from the Weibel-Palade
bodies into the systemic circulation; this is called “acute re-
lease of t-PA” [55, 56]. Furthermore, the acute and massive
t-PA release induces hyperfibrino(geno)lysis [3, 4, 12, 20,
57–62]. Thromboelastometry such as ROTEM® can detect
acute release of t-PA as lysis of clots formed in test tubes
[57–62].

Coagulation activation-induced fibrino(geno)lysis
In severe trauma, hyperfibrino(geno)lysis is frequently ob-
served regardless of the presence of shock [3, 4, 63–69]. In
particular, severe isolated head trauma, which is not
usually complicated by hypotension, is a typical case in
which hyperfibrino(geno)lysis may occur without shock

[63, 66–69]. Hyperfibrino(geno)lysis without shock is
induced by coagulation activation and is recognized by
elevation of D-dimer and fibrin/fibrinogen degradation
product (FDP) levels [3, 4, 63–69]. Kushimoto et al. re-
ported [63] a correlative increase in fibrinogen degrad-
ation product and plasmin-α2 plasmin inhibitor complex
levels. Furthermore, fibrinogen levels markedly decreased
as a result of hyperfibrinogenolysis [63]. Many other stud-
ies reported that D-dimer and FDP levels increased not
only in isolated head trauma [63, 66–69] but also in torso
trauma regardless of the presence of shock [3, 4, 64].
In the acute phase of trauma, plasma PAI activity has

not yet increased enough [19]. Therefore, although
trauma-induced coagulation activation reactively causes
fibrino(geno)lysis, the fibrino(geno)lysis is not sup-
pressed by PAI [19, 65]. Furthermore, non-suppressed
fibrino(geno)lysis consumes α2-plasmin inhibitor and
the consumption of α2-plasmin inhibitor accelerates
the dysregulation of fibrino(geno)lysis [35, 52, 63, 65, 70].

Consumption coagulopathy
As mentioned above, in severe trauma, coagulation activa-
tion and hyperfibrino(geno)lysis are simultaneously ob-
served. Therefore, various coagulation factors and platelets
are consumed in the acute phase of trauma [1, 64, 71–75].
Consumption of coagulation factors has been repeatedly
reported because this phenomenon is easy to evaluate by
measurement of the coagulation factors [1, 64, 71–75].
The plasma fibrinogen level decreases more frequently and
earlier than the levels of other routinely measured coagula-
tion parameters (prothrombin time, activated partial
thromboplastin time, and platelet count) [1]. Furthermore,
infusion or transfusion leads more readily to dilution of
fibrinogen than the other coagulation factors [10, 76]. The
other coagulation factors cannot compensate for the role

Fig. 3 Correlations between antithrombin activity and generated thrombin. Antithrombin was significantly negatively correlated with the ratio of
the peak thrombin generation level to the factor II activity (ρ = −0.733, P < 0.001). Peak height/factor II ratio, peak thrombin generation level/factor
II activity. a Antithrombin was significantly negatively correlated with the ratio of the generated thrombin amount to the factor II activity (ρ = −0.839,
P < 0.001). ETP/factor II ratio, generated thrombin amount/factor II activity. (Cited as Figure 4 in our previous manuscript [27] and adapted with
permission from Wolters Kluwer Health, Inc.)
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of fibrinogen as a unique precursor of fibrin [77, 78]; there-
fore, decreased fibrinogen may lead to massive bleeding
and poor outcome [1, 64, 71, 72]. Other coagulation factor
activities also decrease correlatively with the severity of
trauma [73–75]. Of these, factor V activity decreases more
than the other factor activities [73–75]. Together with de-
creased fibrinogen levels, decreased factor V levels were
detected in patients at accident sites [74]. Platelet counts
are seldom reduced to a critical level (<100 × 109/L) in pa-
tients on arrival at emergency departments and decrease
slower than do fibrinogen levels [1].

Conclusions
The pathophysiology of trauma-induced coagulopathy
consists of coagulation activation, hyperfibrino(geno)lysis,
and consumption coagulopathy. These pathophysiological
mechanisms are characteristic to DIC with the fibrinolytic
phenotype.
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