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Abstract

Background: The purpose of this study is to investigate the time course of syndecan-1 (Syn-1) plasma levels, the
correlation between Syn-1 and organ damage development, and the associations of Syn-1 level with cumulative
fluid balance and ventilator-free days (VFD) in patients with septic shock.

Methods: We collected blood samples from 38 patients with septic shock upon their admission to ICU and for the
first 7 days of their stay. Syn-1 plasma level, acute respiratory distress syndrome (ARDS), other organ damage, VFD,
and cumulative fluid balance were assessed daily.

Results: Over the course of 7 days, Syn-1 plasma levels increased significantly more in patients with ARDS than in
those without ARDS. Patients with high levels of Syn-1 in the 72 h after ICU admission had significantly higher
cumulative fluid balance, lower PaO2/FiO2, and fewer VFD than patients with low levels of Syn-1. Syn-1 levels did
not correlate with sequential organ failure assessment score or with APACHE II score.

Conclusions: In our cohort of patients with septic shock, higher circulating level of Syn-1 of cardinal glycocalyx
component is associated with more ARDS, cumulative positive fluid balance, and fewer VFD. Measurement of Syn-1
levels in patients with septic shock might be useful for predicting patients at high risk of ARDS.
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Background
Sepsis is a life-threatening organ dysfunction caused by
infection-induced dysregulation of host responses, which
may be complicated by septic shock when circulatory
and cellular/metabolic dysfunction occur [1]. Although
mortality associated with sepsis has declined owing to

better and more intense critical care management set-
tings and new diagnostic and therapeutic methods, it re-
mains a deadly condition [2].
The endothelial glycocalyx is a carbohydrate-rich gel-

like layer lining the luminal side of the endothelium sur-
face, composed of syndecan (Syn), hyaluronic acid,
chondroitin sulfate, and heparan sulfate [3]. The glyco-
calyx is the primary physical barrier between blood and
the vessel wall, so its damage can have many patho-
physiological consequences, such as an increase in
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vascular permeability, edema, an increase in adhesion of
circulating inflammatory cells to the endothelium, accel-
eration of inflammatory processes, activation of the co-
agulation cascade, platelet hyperaggregation, and
disturbance of microcirculatory flow [4–7], all of which
are important determinants of the pathophysiology of
sepsis [8, 9]. Loss of vascular integrity has been difficult
to assess routinely in the clinical setting because there
are no widely applicable tools to measure this process.
Given the pathophysiological implications of glycoca-

lyx degradation, glycocalyx fragments that are shed into
the circulation may serve as clinically relevant bio-
markers of vascular integrity [10–13]. Glycocalyx deg-
radation as assessed by increased shedding of Syn-1 and
hyaluronic acid has been observed in various pathologic
states including sepsis [5, 7, 10–13], hemorrhagic shock
[7, 14], acute coronary syndrome [7, 15], volume over-
load [7], and surgical and traumatic injury [14, 16],
which have been associated with poor outcome [17].
However, despite the known role of pulmonary endothe-
lial injury and activation in the pathogenesis of acute re-
spiratory distress syndrome (ARDS), the association
between glycocalyx damage and the development of
ARDS or other organ damage in sepsis is not adequately
understood yet. Because most earlier studies involved
single-point sample collection upon admission to the
emergency room or intensive care unit (ICU), few data
exist with which to assess changes in glycocalyx shed-
ding over time and the relationship of these changes to
the development of vascular integrity.
We hypothesized that shedding of Syn-1 is accelerated

as a result of glycocalyx damage and causes loss of vas-
cular integrity and that sustained pulmonary endothelial
damage would contribute to the development of ARDS
in patients with septic shock. We sought to (1) deter-
mine the time course of changes in Syn-1 and (2) exam-
ine the association of these changes with (a) the
development of organ damage and scores from the Se-
quential Organ Failure Assessment (SOFA) and Acute
Physiology and Chronic Health Evaluation (APACHE) II
and (b) cumulative fluid balance, PaO2/FiO2, and
ventilator-free days (VFD).

Methods
Patient selection
This prospective, single-center, observational study was
conducted in accordance with the Declaration of
Helsinki and was approved by the Institutional Review
Board of Aichi Medical University (2017-H341, 2019-
H137). This study was performed in a 12-bed, closed-
format, mixed medical-surgical emergency ICU in a ter-
tiary referral hospital with 800 beds. Patients were under
the direct care of a team of intensivists, subspecialty fel-
lows, and residents regardless of the time of day.

Of 908 consecutive patients admitted to the emer-
gency ICU of the Aichi Medical University Hospital be-
tween September 2018 and February 2020, we included
38 patients who fulfilled the Sepsis-3 criteria for septic
shock upon ICU admission and who stayed in the ICU
for more than 5 days. The detailed patient enrollment
process is summarized in Fig. 1.
After receiving approval from the Board, written in-

formed consent was obtained from each subject or from
a relative or legal representative if direct consent could
not be obtained. Septic shock was defined according to
the Sepsis-3 criteria, and the diagnosis was confirmed by
2 experienced intensivists [1]. To explain briefly, diagno-
sis of septic shock required the presence of sepsis, circu-
latory failure (mean arterial pressure <65 mmHg with
norepinephrine at 0.1 μg/kg/min), and a lactate level >2
mmol/L. Infection was diagnosed on the basis of clinical
signs of infection and/or culture of microorganisms from
suspected foci. The presence of organ dysfunction was
defined as an increase of the SOFA score by ≥2 points
[18]. All patients were managed according to the 2016
Surviving Sepsis Campaign protocol [19], including fluid
resuscitation, use of vasopressors, red cell/platelet trans-
fusion, protective lung strategies (lower tidal volume,
lower plateau pressure, and higher positive end-
expiratory pressure), and timely initiation of antibiotic
therapy.

Sample measurement
Whole blood samples were collected from 38 patients
with septic shock upon emergency ICU admission and
for the first 7 days of emergency ICU stay, and at
equivalent time points from 15 healthy volunteers (me-
dian age 60, and 60% men) with no significant acute or
chronic illnesses. Plasma collected from healthy volun-
teers was used to determine the Syn-1 reference range.
Plasma was collected after centrifugation and stored at
−70 °C until analysis. Commercially available enzyme-
linked immunosorbent assay was used to determine con-
centrations of Syn-1 (Abcam, Cambridge, UK; lower
limit of detection 8 ng/mL) in the plasma samples.

Clinical data collection
Clinical data including age, sex, comorbidities, chest
radiograph findings, clinical time course, cumulative
fluid balance, ventilator settings, and treatments were
collected from electronic medical records. In addition,
the status of clinical severity was assessed with the
APACHE II score on admission, and the extent of mul-
tiple organ failure was evaluated with the SOFA score
daily for the first 3 days. We assessed the central ner-
vous system SOFA score before intubation because it is
difficult to assess the exact mental status of patients
under sedation. The maximum SOFA score was the
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highest value reached during the first 3 days. Microbio-
logical and clinical infections were evaluated daily. The
daily cumulative fluid balance was computed by sub-
tracting fluid output from fluid intake. Fluid intake in-
cluded oral, tube feeding, and intravenous intake. Fluid
output included urine, drains, bleeding, gauze, and renal
replacement amounts. All daily fluid indices (fluid in-
take, output, and balance) were measured for the first,
second, and third days of ICU admission, and the cumu-
lative fluid balance was registered at 72 h for that period.
All values were adjusted to the individual’s initial body
weight and expressed as ml/kg body weight per 72 h.
The presence of ARDS was assessed daily for the

first 3 days according to the Berlin definition, which
includes bilateral radiographic infiltrates on chest
radiograph, acute onset with worsening respiratory
status, and hypoxemia defined as PaO2/FiO2 <300
mmHg while receiving positive end-expiratory pres-
sure or continuous positive airway pressure of >5
cm H2O [20]. Patients with evidence of a primary
cardiogenic course for pulmonary edema were not
considered to have ARDS. Patients who met criteria
for ARDS for at least two consecutive blood gas
analyses performed every 6 h were considered to
have ARDS; patients who met ARDS criteria at only
one blood gas analysis time point or at non-
consecutive time points were not considered to have
ARDS.
The presence of DIC was assessed daily for the first 3

days according to the Japanese Association for Acute
Medicine DIC criteria (see Additional file 1) [21], which
include systemic inflammatory response syndrome,

platelets, prothrombin time ratio, and fibrinogen degrad-
ation product.

Statistics
Data were collected in MS Windows Office Excel 2013.
All statistical analyses were performed using SigmaPlot
v14.0 (Systat Software Inc., San Jose, CA, USA) and IBM
SPSS v 27 (SPSS Inc, Chicago, Ill, USA). Our study was
powered to detect a difference between Syn-1 level and
parameters of septic shock, including cumulative fluid
balance, VFD, PaO2/FiO2, catecholamine, and the pres-
ence of ARDS. On the basis of mean differences and
corresponding standard deviations, we calculated that
we needed a sample size of 15 to 38 patients to find a
difference in each parameter, with a 2-sided confidence
interval of 0.95 and a desired power of 0.8.
Categorical variables are reported as absolute numbers

and percentages, and continuous variables are shown as
the median with interquartile range (IQR) due to the
skewed distribution of most of the parameters. Correl-
ation between plasma Syn-1 level and PaO2/FiO2 was
assessed by a Spearman rank-order correlation analysis.
Plasma Syn-1 level, maximum SOFA score, APACHE II
score, VFD and cumulative fluid balance, and parame-
ters for organ failure were compared between the high
and low Syn-1 groups by the Mann-Whitney rank sum
test. The comparison of clinical characteristics of septic
shock between ARDS and non-ARDS patients was per-
formed by the Mann-Whitney rank sum or Chi-square
test. A threshold of Syn-1 level was defined to 75% IQR
of all measured Syn-1 level from septic shock patients.
To evaluate whether sepsis-related ARDS significantly

Fig. 1 Flowchart summarizing the patient selection procedure in the emergency ICU
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changed the overall plasma values of Syn-1 during the
period after admission, we used a 2-way repeated mea-
sures ANOVA. The distribution of time course changes
in plasma Syn-1 trends during the late stage of septic
shock and the presence of ARDS were compared by
Fisher’s exact test.

Results
Patient characteristics
The demographic data of the patients and their illness
severity scores calculated in the emergency ICU are
summarized in Table 1. All 38 patients (73% men)
with a median age of 75 years fulfilled the criteria for
diagnosis of septic shock. All patients were
vasopressor-dependent at the time of inclusion in the
study. The primary sites of infection were intra-
abdominal infection in 15, urinary tract infection in
10, and respiratory tract infection in 6. The septic
shock cohort had a median maximum SOFA score

estimated during the first 3 days of 11 and APACHE
II score at admission of 30, indicating high disease se-
verity. The median (IQR) of Syn-1 was significantly
higher in patients with septic shock than in healthy
controls (265 [168–494] vs 41 [27–65], P < 0.001).

Longitudinal change of Syn-1 level and risk of ARDS
Over the course of 7 days, Syn-1 plasma levels increased
significantly more in patients with ARDS than in those
without ARDS (Fig. 2). Syn-1 initially increased in pa-
tients with ARDS and then decreased, but it consistently
remained at a higher level than in patients without
ARDS. We found a weak negative correlation between
the plasma Syn-1 level and PaO2/FiO2 in patients with
septic shock and secondary ARDS (Fig. 3). Comparing
the clinical characteristics of patients with ARDS and
non-ARDS, there are no significant differences in age,
gender, site of infection, pathogen, severity of illness,
surgical intervention, ICU death, maximum SOFA,

Table 1 Clinical characteristics of patients with septic shock in the presence or absence of acute respiratory distress syndrome
(ARDS)

Characteristic All septic shock patients
(n=38)
Median (IQR) or n (%)

Septic shock patients with
ARDS (n=20)
Median (IQR) or n (%)

Septic shock patients without
ARDS (n=18)
Median (IQR) or n (%)

P value

Age, years 75 (67, 81) 78 (68, 82) 72 (64, 79) 0.396

Male 28 (73) 14 (70) 14 (78) 0.257

ICU stay, days 9 (7, 15) 10 (8, 17) 9 (5, 11) 0.026

Site of infection

Intra-abdominal 15 (40) 7 (35) 8 (44) 0.793

Respiratory tract 6 (16) 3 (15) 3 (17) 1.0

Urinary tract 10 (26) 6 (30) 4 (22) 0.719

Skin/soft tissue 3 (8) 1 (5) 2 (11) 0.595

Others 4 (9) 3 (15) 1 (6) 0.606

Nonhospital health care-associated infection 11 (29) 6 (30) 5 (28) 0.836

Bacteria

Gram-positive 14 (37) 7 (35) 7 (39) 0.929

Gram-negative 18 (47) 10 (50) 8 (44) 0.986

Both 4 (11) 2 (10) 2 (11) 1.0

Fungus 2 (5) 1 (5) 1 (6) 1.0

Maximum SOFAa 11 (9, 15) 14 (9, 17) 9 (7, 11) 0.202

APACHE II scoreb 30 (26, 34) 32 (28, 35) 30 (26, 31) 0.063

Presence of comorbidities 16 (42) 7 (35) 9 (50) 0.544

Surgical intervention 16 (42) 6 (30) 10 (56) 0.206

Mechanical ventilation 22 (58) 20 (100) 2 (11) <0.001

ICU deaths 1 (2.6) 1 (5) 0 (0) 1.0

Syn-1, ng/ml 265 (168, 494) 423 (193, 826) 177 (168, 494) <0.001

Abbreviations: SOFA, Sequential Organ Failure Assessment; APACHE II, Acute Physiology and Chronic Health Evaluation II; IQR, interquartile range; Syn-1, syndecan-
1; ARDS, acute respiratory distress syndrome
aSOFA score ranges from 0 to 24
bAPACHE II score ranges from 0 to 71
P values are given for comparison of septic shock between ARDS and non-ARDS patients
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APACHE II, and comorbidities. A significant difference
between these groups were seen for ICU stay, mechan-
ical ventilation, and Syn-1 level (Table 1).

Distribution of Syn-1 levels of patients with septic shock
The distribution of Syn-1 levels is shown in Fig. 4a
and b; the median level was 265 ng/mL (IQR, 168 to
494 ng/mL). Patients with septic shock were divided
into 2 groups by using the upper (third) quartile
(Q3) as the cutoff value. Patients with a Syn-1 level
below Q3 (<494 ng/mL) were defined as the low
Syn-1 group, and those with a Syn-1 level above Q3
(> 494 ng/mL) were defined as the high Syn-1
group. Moreover, the highest Syn-1 level measured 1
to 3 days after ICU admission was defined as the

Syn-1 level in the early stage of septic shock, and
the highest Syn-1 level measured 5 to 7 days after
admission was defined as the Syn-1 level in the late
stage of septic shock. According to the Q3 threshold,
in the early stage of septic shock, 21 of the 38 pa-
tients were assigned to the high Syn-1 group and 17
to the low Syn-1 group (Table 2). In the late stage
of septic shock, 11 of the 38 patients were assigned
to the high Syn-1 group and 27 to the low Syn-1
group (Table 2).

Plasma Syn-1 levels and organ failure
In the early stage of septic shock, the median Syn-1 level
was 4 times higher in the high Syn-1 group than in the
low Syn-1 group (Table 2), and in the late stage of septic
shock, it was 4.5 times higher in the high Syn-1 group
than in the low Syn-1 group (Table 2). When comparing
organ damage between groups, we found that in the
early stage of septic shock, patients in the high Syn-1
group had higher cumulative fluid balance, lower PaO2/
FiO2, more ARDS, and fewer VFD than patients in the
low Syn-1 group (Table 2). Other organ damage parame-
ters, including creatinine, Glasgow coma scale, total bili-
rubin, DIC score, and norepinephrine dose, did not
differ significantly between these groups (Table 2). Max-
imum SOFA scores in the 72 h after ICU admission and
APACHE II scores on admission were not significantly
different between the two groups (Table 2). In the late
stage of septic shock, patients in the high Syn-1 group
showed significantly more ARDS than patients in the

Fig. 2 Course of syndecan-1 (Syn-1) levels over 7 days in septic
shock patients with (n = 20) or without (n = 18) acute respiratory
distress syndrome (ARDS). Over the course of 7 days, plasma Syn-1
levels were significantly higher in the group with ARDS than in the
group without ARDS (2-way repeated measures ANOVA). The data
are expressed as medians and 95% CIs

Fig. 3 Scattergram of plasma Syn-1 concentration and PaO2/FiO2

and Spearman rank order correlation analysis in patients with septic
shock and secondary acute respiratory distress syndrome (ARDS)

Fig. 4 Distribution of Syn-1 levels in patients with septic shock (n =
38). a Box plot is shown with median (line inside box), 25th and
75th percentiles (left and right lines of box), and range (whiskers).
Any data not included between the whiskers are plotted as outliers
(small circles). b Histogram is plotted with 258 samples collected
from patients with septic shock
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low Syn-1 group. Because most of our patients with sep-
tic shock (97%) survived, we could not explore whether
Syn-1 levels are correlated with 30-day mortality.

Time course changes of plasma Syn-1 levels and ARDS
The patients assigned to the high Syn-1 group in the
early stage of septic shock showed 2 distinct Syn-1
trends during the late stage of septic shock: persist-
ently high levels (> 494 ng/ml) throughout 7 days
(Group I) or a high peak (> 494 ng/mL) in the first 3
days followed by a progressive decrease (Group II).
Of the 21 patients in the high Syn-1 group in the
early stage of septic shock, 10 were classed as group I
and 11 as group II. All patients in group I had ARDS,
whereas only 5 of the 11 patients in group II had
ARDS. ARDS was more frequent in patients with high
levels of Syn-1 throughout 7 days than in patients
with a high peak in the first 3 days followed by a
progressive decrease (Fisher’s exact test, P = 0.012).

Discussion
The main finding of the present study is that persistently
high plasma Syn-1 levels in patients with septic shock
are associated with ARDS and reduction of PaO2/FiO2.
High levels of plasma Syn-1 in the early stage of septic
shock are associated with positive cumulative fluid bal-
ance, and lower VFD and PaO2/FiO2. These results sug-
gest that septic shock patients with high circulating Syn-
1 level may represent a cohort at particular risk for
ARDS.

Recent experimental evidence in rodents showed that
the endothelial glycocalyx is reduced by shedding after
administration of lipopolysaccharide (LPS) or tumor ne-
crosis factor [22–24]. The disruption of the pulmonary
endothelial glycocalyx causes neutrophil-endothelial
interaction and fluid and protein extravasation; accord-
ingly, such disruption may mediate LPS-induced ARDS
in animal models [24]. In a model of LPS-induced lung
injury, intravital [4] and electron microscopy [25] dem-
onstrated a severe disruption and peeling away of moss-
like capillary endothelial glycocalyx, accompanied by a
reduction in pulmonary Syn-1 levels and an increase in
vascular permeability. A recent clinical study showed
that endothelial glycocalyx shedding was found in ARDS
after flu syndrome [26]. However, there is a lack of stud-
ies investigating whether endothelial glycocalyx degrad-
ation contributes to ARDS development in patients with
bacterial sepsis. The present study shows that the extent
of glycocalyx disruption (as assessed by elevated plasma
Syn-1 levels in 72 h after ICU admission) is closely re-
lated to the development of septic-induced ARDS. Our
control values for serum Syn-1 concentrations are con-
sistent with data reported by others [16]. Our finding
supports a previous report by Murphy et al. [27], which
showed that endothelial glycocalyx degradation assessed
by plasma Syn-1 collected on day 2 was associated with
the development of secondary ARDS caused by non-
pulmonary sepsis. The authors concluded that the con-
tribution of endothelial glycocalyx loss in the pathogen-
esis of ARDS would be less prominent in primary ARDS
than secondary ARDS. Because most (84%) of our

Table 2 Plasma syndecan-1 (Syn-1) level and organ failure

Characteristics Syn-1 in early stage of septic shock Syn-1 in late stage of septic shock

High (n = 21) Low (n = 17) P value High (n = 11) Low (n = 27) P value

Organ failure

Creatinine, median (IQR), mg/dL 2.2 (1.3, 4) 1.1 (0.7, 2.5) 0.119 1.9 (1.0, 4.0) 1.9 (0.8, 2.8) 0.669

DIC score, median (IQR) 6 (5, 8) 5.5 (3.3, 7.8) 0.151 6 (4, 8) 6 (5, 8) 0.945

Total bilirubin, median (IQR), mg/dL 1.78 (1.20, 3.27) 1.19 (0.83, 1.68) 0.051 1.94 (1.17, 3.46) 1.3 (0.79, 2.03) 0.113

Glasgow coma scale, median (IQR) 14 (6.8, 15) 14.5 (12, 15) 0.235 14.5 (9, 15) 14 (8.8, 15) 0.578

Norepinephrine dose, median (IQR), mcg/kg/min 0.6 (0.4, 0.8) 0.4 (0.2, 0.5) 0.063 0.6 (0.3, 0.8) 0.4 (0.3, 0.6) 0.14

PaO2/FiO2, median (IQR) 204 (160, 350) 340 (248, 420) 0.032 194 (161, 274) 330 (204, 420) 0.032

ARDS, n (%) 15/21 (71) 5/17 (29) 0.01 10/11 (91) 10/27 (37) 0.006

Cumulative fluid balance, median (IQR), ml/kg/d 172 (124, 239) 120 (42, 154) 0.003 157 (132, 220) 134 (76.6, 198) 0.221

Ventilator-free days, median (IQR) 22 (15, 25) 25 (23, 28) 0.025 23 (19, 25) 25 (20, 28) 0.305

APACHE IIa, median (IQR) 31 (28, 35) 27.5 (24.3, 31) 0.082 30 (26, 34) 30 (26, 35) 0.636

Maximum SOFAb, median (IQR) 12 (10, 17) 9 (7, 15) 0.071 15 (9, 15) 11 (7.8, 15) 0.229

Syn-1, median (IQR), ng/mL 1022 (612, 1473) 253 (168, 415) <0.001 805 (546, 899) 177 (142, 250) <0.001

Abbreviations: APACHE II, Acute Physiology and Chronic Health Evaluation II; IQR, interquartile range; DIC, disseminated intravascular coagulation; ARDS, acute
respiratory distress syndrome; Syn-1, syndecan-1
aAPACHE II score ranges from 0 to 71
bMaximum SOFA score ranges from 0 to 24
In both scales, lower scores indicate better organ function. P values are given for comparison of high and low Syn-1 groups
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patients with septic shock had secondary ARDS, we
could not confirm whether different causes of ARDS
were correlated differently to the extent of endothelial
glycocalyx damage.
The second important finding of the present study is

that the relationship between high Syn-1 level over the 7
days after ICU admission and illness severity in early
stage of septic shock were not identified except for pul-
monary disturbances. Some previous studies in patients
with sepsis showed a significant association between
plasma Syn-1 level and SOFA score [17], hypocoagul-
ability [10], APACHE II score [17], and development of
acute kidney injury [28], whereas other studies showed
no significant correlations of Syn-1 with SOFA score
[29], noradrenaline infusion, [30] or the Simplified Acute
Physiology Score II [29]. The discordance between these
results could be attributed to differences in the patients’
backgrounds and comorbidities, since Syn-1 level can be
elevated in a range of chronic diseases including heart
failure [31], chronic kidney disease [32], and diabetes
mellitus [33], which are known to worsen organ failure
or its outcomes [34]. The difference in the timings of
sample collection may also account for the different
findings because almost all previous studies measured
Syn-1 at only one time point.
The third important finding of the present study is

that the sustained high levels of plasma Syn-1 (as
assessed by elevated plasma Syn-1 levels in the early and
late stages of septic shock) were closely related to the
presence of ARDS. Sustained high levels of plasma Syn-1
suggest a pathological condition caused not only by the
continuous shedding of the endothelial glycocalyx but
also by an impairment of glycocalyx reconstitution. The
resulting delay of glycocalyx reconstitution exacerbates
and prolongs the damage to vascular integrity [35, 36].
Because this positive cumulative fluid balance is

mainly caused by systemic vascular hyperpermeability (a
characteristic finding in patients with septic shock), in-
flammatory injury to the glycocalyx as assessed by high
levels of circulating Syn-1 would be linked to the in-
crease in vascular permeability. Recent literature showed
that increased cumulative fluid balance, which leads to
increased pulmonary edema and loss of aerated lung tis-
sue, is associated with fewer VFD, lower PaO2/FiO2, and
ARDS [37, 38]. A retrospective review of the Fluid and
Catheter Treatment Trial also showed that a negative
cumulative fluid balance was associated with more VFD
[39]. Our results are consistent with these previous stud-
ies. However, further studies are needed to clarify the re-
lation between the development of vascular
hyperpermeability during septic shock and the increased
levels of circulating Syn-1.
Some limitations of this study should be considered.

First, the study was a single-center study with a limited

number of patients, which means that our results require
confirmation by a larger investigation. Second, this study
showed limited analysis of glycocalyx components and
so does not allow independent evaluation of the sug-
gested cause-and-effect relationship. To establish poten-
tial causality and improve our understanding of the
interaction between the glycocalyx, vascular integrity,
and lung injury in patients with septic shock, a direct
histological analysis of pulmonary specimens is neces-
sary. Third, we assayed circulating levels of glycocalyx
components from human plasma samples. While we
know that the major source of this protein is the endo-
thelium, some of these glycocalyx components are also
present on epithelial cells [40]. It is therefore difficult to
ascertain the origin of the circulating glycocalyx
components.

Conclusions
This study shows that higher circulating levels of Syn-1
during the first 7 days of ICU stay are associated with
sepsis-related ARDS. Results showed that higher circu-
lating levels of Syn-1 in the 72 h after ICU admission
was closely related to positive cumulative fluid balance,
and decreased VFD and PaO2/FiO2. Measurement of
Syn-1 levels in patients with septic shock might be useful
for predicting patients at high risk of ARDS.
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