
RESEARCH Open Access

Creation of an artificial intelligence model
for intubation difficulty classification by
deep learning (convolutional neural
network) using face images: an
observational study
Tatsuya Hayasaka1* , Kazuharu Kawano2, Kazuki Kurihara1, Hiroto Suzuki3, Masaki Nakane4 and Kaneyuki Kawamae1

Abstract

Background: Tracheal intubation is the gold standard for securing the airway, and it is not uncommon to
encounter intubation difficulties in intensive care units and emergency rooms. Currently, there is a need for an
objective measure to assess intubation difficulties in emergency situations by physicians, residents, and paramedics
who are unfamiliar with tracheal intubation. Artificial intelligence (AI) is currently used in medical imaging owing to
advanced performance. We aimed to create an AI model to classify intubation difficulties from the patient’s facial
image using a convolutional neural network (CNN), which links the facial image with the actual difficulty of
intubation.

Methods: Patients scheduled for surgery at Yamagata University Hospital between April and August 2020 were
enrolled. Patients who underwent surgery with altered facial appearance, surgery with altered range of motion in
the neck, or intubation performed by a physician with less than 3 years of anesthesia experience were excluded.
Sixteen different facial images were obtained from the patients since the day after surgery. All images were judged
as “Easy”/“Difficult” by an anesthesiologist, and an AI classification model was created using deep learning by linking
the patient’s facial image and the intubation difficulty. Receiver operating characteristic curves of actual intubation
difficulty and AI model were developed, and sensitivity, specificity, and area under the curve (AUC) were calculated;
median AUC was used as the result. Class activation heat maps were used to visualize how the AI model classifies
intubation difficulties.

Results: The best AI model for classifying intubation difficulties from 16 different images was generated in the
supine-side-closed mouth-base position. The accuracy was 80.5%; sensitivity, 81.8%; specificity, 83.3%; AUC, 0.864;
and 95% confidence interval, [0.731-0.969], indicating that the class activation heat map was concentrated around
the neck regardless of the background; the AI model recognized facial contours and identified intubation
difficulties.
(Continued on next page)
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Conclusion: This is the first study to apply deep learning (CNN) to classify intubation difficulties using an AI model.
We could create an AI model with an AUC of 0.864. Our AI model may be useful for tracheal intubation performed
by inexperienced medical staff in emergency situations or under general anesthesia.
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Background
It is not uncommon to encounter difficult intubation in
intensive care units and emergency rooms. In addition,
emergency tracheal intubation also occurs in general
wards and emergency settings, and physicians and resi-
dents who are not familiar with tracheal intubation may
be asked to perform it [1, 2]. There have also been cases
related to out-of-hospital cardiac arrest in which para-
medics have been asked to perform tracheal intubation
at the scene. Intubation difficulty occurs in 5–27% of
cases, and guidelines have been established to address
this difficulty [3–5]. However, Rosenstock indicated that
despite having guidelines for difficult intubations, recal-
ling and following them is challenging when an effective
method needs to be chosen for urgent airway clearance
[6]. Chest compression needs to be interrupted during
the intubation procedures in CPR, and a failure of initial
tracheal intubation reduces the ability to achieve a re-
turn of spontaneous circulation in patients experiencing
cardiac arrest, while likewise increasing the occurrence
of adverse events such as hypoxemia and aspiration [7,
8]. In addition, mechanical damage caused by frequent
intubations can lead to visual field defects such as laryn-
geal edema and hemorrhage, thereby complicating intu-
bations, sustaining the inability to ventilate, and
worsening the patient’s condition. Therefore, in emer-
gency situations, it is particularly important to immedi-
ately request for the technical assistance of an
experienced emergency airway management physician,
rather than continuing the efforts to intubate the patient
with intubation difficulty. Based on this concept, we be-
lieve that the clinical strategy to quickly and objectively
determine whether the patient has intubation difficulty
is crucial in emergency airway management. In addition,
even skilled anesthesiologists struggle to detect intub-
ation difficulty in patients who undergo general
anesthesia. One of the reasons for this difficulty is the
lack of a uniform index for the risk assessment of intub-
ation difficulties [9]. The indicators currently used to as-
sess intubation difficulty clinically include the
Mallampati classification (MPC), inter-incisor gap (IIG),
head and neck movements (HNM), thyromental distance
(TMD), horizontal length of the mandible (HLM), buck
teeth (BT), and upper lip bite test (ULBT) [10]. Among
these approaches, the ULBT is the most accurate one by
itself, but the area under the curve (AUC) of the receiver

operating characteristic curve (ROC curve) is approxi-
mately 0.70 [11–13]. Another method for assessing in-
tubation difficulty is the modified LEMON criteria [14],
which takes into account (1) external appearance, (2)
distance between the incisor teeth, (3) distance between
the hyoid bone and the chin, (4) airway obstruction, and
(5) neck immobility. The modified LEMON criterion has
a sensitivity of 85% and a specificity of 47% for the pre-
diction of intubation difficulty by direct laryngoscopy.
However, the ULBT and the modified LEMON criteria
have been evaluated by skilled physicians who are famil-
iar with airway clearance, such as anesthesiologists,
intensivists, and emergency physicians. The modified
LEMON criteria also include a subjective assessment of
the external appearance, which is typically vague and dif-
ficult to quantify. From this viewpoint, we believe that
an objective measure for assessing intubation difficulty
in emergency situations is essential to reduce prevent-
able airway crises leading to the possible sudden death
of the patient.
In recent years, artificial intelligence (AI) technology

has developed, and image analysis systems have contin-
ued to evolve. Among them, analytical methods based
on convolutional neural network (CNN) have been
growing [15, 16]. The CNN-based methods have been
applied in the medical field, and AI models have been
created to locate intubation tubes in patients who
undergo intubation based on findings from chest X-ray
images and to diagnose heart failure from chest X-ray
images [17, 18]. We hypothesized that this CNN could
be used to discriminate the presence or absence of in-
tubation difficulty using a patient’s facial image. If the
presence of intubation difficulty can be determined in
advance, then the patient’s treatment can be shifted to
an anesthesiologist or emergency physician without ag-
gravating the patient’s condition by unreasonable intub-
ation techniques.
This study aimed to create an AI model to classify in-

tubation difficulty using deep learning (CNN), which
connects the face image of a surgical patient and the ac-
tual difficulty of intubation.

Methods
This was an observational study of patients who received
general anesthesia and were scheduled for surgery at Ya-
magata University Hospital from April 10, 2020 (the
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start date of UMIN enrollment: UMIN000040123),
through August 31, 2020. Written informed consent was
obtained from each patient.
The exclusion criteria were patients younger than 20

years of age, patients who had undergone surgery with
altered facial appearance (neurosurgery, heart surgery,
nasal surgery, dentistry, and ophthalmology), patients
who had undergone surgery with altered range of mo-
tion in the neck (thyroid, cervical spine, and esophageal
surgery), and patients who underwent intubation by a
physician with less than 3 years of anesthesia experience
[19]. Patients whose physicians did not use the Macin-
tosh laryngoscope at the time of initial intubation were
excluded. Patients intubated with other devices, man-
aged with supraglottic airway devices, with dementia or
inability to follow instructed movements, with psychi-
atric disorders, and unable to participate in this study
because of participation in other studies were excluded.
After induction of general anesthesia, the
anesthesiologist performed tracheal intubation using a
Macintosh laryngoscope, and the Cormack–Lehane clas-
sification was evaluated and documented in the medical
records. If the Cormack–Lehane classification was not
reported in the medical records, then the author con-
firmed the patient’s Cormack–Lehane classification dir-
ectly with the anesthesiologist. The definition of the
Cormack–Lehane classification (Fig. 1) indicates the visi-
bility of the glottis during tracheal intubation with the
Macintosh laryngoscope. Grade I indicates that the en-
tire vocal cords are visible. Grade II indicates that only
parts of the vocal cords are visible, grade III that the epi-
glottis is visible but the vocal cords are not, and grade
IV that the epiglottis is invisible [20]. In the present
study, the Cormack–Lehane classification assessment
was made at the time point when no special operations
such as the BURP method (Backward, Upward, and
Rightward Pressure) or ramp position were performed
[21, 22]. The author collected information about the pa-
tient’s demographics such as age, sex, body mass index,
comorbidities, MPC, IIG, HNM, TMD, HLM, BT, and

ULBT from the patient the next day of the operation,
and took facial images in 16 different body positions
(Fig. 2). All these images were saved in JPEG format and
resized to 512px × 512px to reduce excessive feature
and computational complexity. The definition of intub-
ation difficulty in this study was “Cormack–Lehane Clas-
sification grade III or higher.” All images were labeled
easy and difficult; Cormack–Lehane classification grades
I and II were labeled as the non-intubated difficult group
(easy group), and Cormack classification grades III and
IV were labeled as the intubated difficult group (difficult
group) [23].
Of the obtained images, 80% were used as training

data and the remaining 20% were used as test data for
inference evaluation. The training data was expanded to
avoid overlearning of the model. In doing so, we cor-
rected for the bias in the number of cases between the
easy and difficult groups by performing data expansion.
For data expansion, we used the ImageDataGenerator
class of the deep learning library Keras to expand and
reduce the training data from 0.7 to 1.3 times.
The model generation process in this study is shown

in Fig. 3, and the overall model of the CNN is shown in
Fig. 4. We used two methods of deep learning, transfer
learning and fine tuning. Transfer learning is a deep
learning technique that improves the accuracy of the AI
model by incorporating a trained model created using a
large data set into the model to be created [24, 25]. By
using transfer learning, we can obtain a high classifica-
tion accuracy of the AI model we want to create with
few images because the trained model extracts good fea-
tures. In this study, we used a trained model called
VGG16, which is trained from 14 million images and
comprises 16 layers: 13 convolutional layers and 3 fully
connected layers. We also used fine tuning, which classi-
fies the final output as easy/difficult depending on the
patient face images acquired in this study [26]. The
model in this study was created by adding one convolu-
tion layer to the 13 convolution layers obtained from
VGG16, and the output was whether the input image

Fig. 1 Cormack-Lehane classification. Grade I shows the entire glottis, grade II shows a part of the glottis, grade III shows the epiglottis but not
the vocal cords, and grade IV shows the epiglottis is invisible
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belonged to easy/difficult or not. After training the model,
the accuracy of predicting intubation difficulty was verified
using a pre-segmented image dataset (test data) for infer-
ence evaluation. We applied quadratic cross-entropy as a
loss of function and Adam as the optimization method,
and the machine trained the model with 10-30 epochs
and a batch size of 16-32. The evaluation metrics were the
accuracy of the test data, sensitivity, specificity, and AUC
calculated from the ROC curve. After the AI models were
produced, the evaluation domain of the models was visu-
alized with a gradient class activation map (Grad-CAM)
using the image dataset for inference evaluation [27].
The class activation heat map is a two-dimensional

image created by calculating the importance of each re-
gion based on the results of easy/difficult classification.
The red and yellow areas on the heat map indicate the
areas that the AI model considered important for the
easy/difficult classification. The RGB values (red, green,
and blue values) of each pixel in the class activation heat
map of the image for inference evaluation were com-
bined and averaged to create a single image (RGB aver-
age image) for the easy and difficult groups, respectively.
To reduce the influence of data bias caused by ran-

domly dividing the image data for training and inference
evaluation, we performed fivefold cross-validation. In
addition, we used the stratified k fold to avoid any bias
in the distribution of the easy and difficult groups when
creating the five data sets. We trained and evaluated the
model on each dataset and calculated the AUC of each.
The median of the AUCs is shown as the result for each
image model.

Keras, ver 2.24, was used as a deep learning library,
and the 2019 version of Visual Studio Code from Micro-
soft was used as the development environment. In
addition, the analysis hardware used was Intel Core i7
CPU, NVIDIA GeForce RTX 2080 SUPER 8GB GPU,
and Microsoft Windows 10 Home OS. EZR, version
1.41, was used for all statistical analyses, and the results
were expressed as mean ± standard deviation and num-
bers (percentages). ROC curves were generated from the
constructed model, and the presence or absence of ac-
tual intubation difficulties, accuracy, sensitivity, specifi-
city, and AUC were calculated. The constructed model
had sufficient diagnostic capability when AUC >0.700
and the lower limit of 95% confidence interval (CI) being
>0.500.

Results
In total, 1043 patients were scheduled for surgery under
general anesthesia from April 10, 2020 (UMIN registra-
tion start date), to August 31, 2020. Of them, 752 were
excluded, 75 could not provide consent, 9 had missing
data on the Cormack–Lehane classification, and 2 were
duplicates. A total of 838 patients were excluded, and
205 patients were eligible. In addition, two patients with
poor data (one whose facial contour could not be recog-
nized due to the presence of hair and one whose image
was out of focus) and one patient whose image was
missing due to imaging equipment problems were ex-
cluded. Finally, a total of 202 patients were included in
the analysis (Fig. 5). Difficulty in intubation was assessed
during general anesthesia induction in 26.7% (54 of 202

Fig. 2 Patient face image (author’s own). Patient’s face (author’s own images). Eight patterns were captured in each of the supine and sitting
positions for a total of 16 patterns
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patients) (Table 1). Of the 202 patients, 92 were male,
and 110 were female, and their mean age was 63.9 ±
14.2 years. Patients had the American Society of Anes-
thesiologists Physical status (ASA PS) 1–3, with 15.8%
having ASA PS 1, 67.8% having ASA PS 2, and 16.3%
having ASA PS 3. The number of years of experience of
anesthesiologists who intubated patients during general
anesthesia was 11.2 ± 6.9 years. The surgical details in
this study are shown in Table 2. Moreover, 26.7% of
cases were rated as difficult to intubate (Table 1). There
was a 3:1 difference in the data between easy intubation
patients and difficult intubation patients. Before per-
forming machine learning on patient face images, 20% of

the total data was saved as test data. Using KFOLD1 as
an example, 30 images in the easy group and 11 images
in the difficult group were saved as test data (20% of the
total images). The remaining 118 images in the Easy
group and 43 images in the difficult group were used as
training data (80% of the total images). In the training
data, the easy group was expanded 3 times, and the diffi-
cult group was expanded 9 times. In the end, the easy
group had 354 pieces of training data, and the difficult
group had 387 pieces of training data (Table 3).
Figure 6 shows the learning curve for the supine-side-

closed mouth-base position. The black line represents
the training data, and the gray line represents the test

Fig. 3 Overall view of AI model creation (author’s own). This figure shows the process of creating an AI model. To reduce the effect of data bias
caused by randomly splitting the training data and test data, we split the training data from the test data by performing fivefold cross-validation
and prepared five data sets
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data. The learning curve of the test data follows the
learning curve of the training data, which indicates that
the AI model is learning properly.
The AI model in dataset 1 in the supine-side-closed

mouth-base position showed an accuracy of 80.5% at
epoch 20 (Table 4). ROC curves were drawn from the AI
model’s predictions to classify the actual degree of intub-
ation difficulty and connect it with the degree of intub-
ation difficulty obtained from patient face images.
Sensitivity, specificity, and AUC were calculated (Table 5).
The AI model’s AUC to classify the degree of intubation

difficulty obtained from patient facial images ranged from
0.387 [0.168–0.605] to 0.864 [0.731–0.969]. The max-
imum AUC was 0.864 [0.731–0.969] obtained from the AI
model of the supine-side-closed mouth-base position, with
an accuracy, sensitivity, and specificity of 80.5%, 81.8%,
and 83.3%, respectively (Fig. 7). The AI model of the
supine-side-opened mouth-base position had an AUC of
0.758 [0.594–0.921], and those of the supine-side-closed
mouth-backbend position had an AUC of 0.727 [0.568–
0.886], which were judged to be sufficient for the diagnosis
of intubation difficulty.

Fig. 4 Overview of the whole model. Model generation was performed by way of a 13-layer convolutional model obtained from VGG16, adding
one layer of convolution to that model

Fig. 5 Flowchart of target patients. Informed patient consent was waived, Cormack–Lehane classification unknown, duplicate surgery patients
during the period, and missing data; there were 202 patients included in the study
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In the class activation heat map using Grad-CAM for
the supine-side-closed mouth-base position, the view-
points tended to be concentrated in the area from the
chin tip to the larynx in the images classified as easy in-
tubation. However, the images classified as difficult did
not show any concentration of viewpoints in specific

areas. In the RGB-averaged images, the easy group
showed a tendency for the area of interest to be concen-
trated from the chin tip to the larynx, while the difficult
group showed a tendency for the viewpoints to be dis-
persed (Figs. 8, 9).
ROC curves were constructed from various predictors

of intubation difficulty and the presence or absence of
difficulty in actual intubation for patients in this study,
and the sensitivity, specificity, and AUC were calculated
(Table 6). The AUCs of the various predictors of intub-
ation difficulty ranged from 0.558 [0.467-0.649] to 0.673
[0.595-0.750], with the Mallampati classification being
the largest predictor. No single indicator was found to
have sufficient diagnostic power to discriminate between
the various predictors of intubation difficulties. However,
the AUC of the AI model for the classification of intub-
ation difficulty based on the images of the supine-side-
closed mouth-base position was 0.864 [0.731–0.969],
with an accuracy of 80.5%, a sensitivity of 81.8%, and a
specificity of 83.3%, indicating that the model had suffi-
cient diagnostic capability.

Discussion
In this study, in the process of creating an AI model to
classify intubation difficulties by deep learning, the AI
model was created using the patient’s face images taken

Table 1 Patients’ background characteristics

The rate of intubation difficulties is 26.7%
BMI Body mass index, ASA-PS American Society of Anesthesiologists-Physical Status

Table 2 Patients’ surgical details

The number of patients by type of surgery is shown. The maximum number of
patients was 48 in gynecology
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in 16 different body positions. The best AI model for
classifying intubation difficulty was taken in the supine-
side-closed mouth-base position, with an AUC of 0.864
[0.731–0.969], an accuracy of 80.5%, a sensitivity of
81.8%, and specificity of 83.3% (Table 3).
In order to visualize how the AI model discriminates

difficult intubation, we obtained a class activation heat
map using Grad-CAM. The AI model was able to focus
on the author’s neck area without concentrating on the
background, indicating that the AI model recognized the
contour of the face and might discriminate against in-
tubation difficulties. The heat map showed that the area

around the neck tended to be evaluated as a region of
interest in the face image of a patient who was easy to
intubate. The region of interest tended to be concen-
trated in the area from the chin tip to the larynx in the
average RGB value image of the easy. This suggests that
the AI model identifies easy intubations by extracting
the characteristics of the neck shape. In the difficult
group’s RGB-averaged images, the viewpoints tended to
be dispersed, suggesting that there were multiple factors
such as a small jaw and obesity in the face images of pa-
tients with difficult intubations, rather than a single
cause. By increasing the number of data in the future

Table 3 Test data and training data for each fivefold cross-validation, and training data after data expansion

The number of facial images of patients classified into the easy and difficult groups by fivefold cross-validation is shown. The number of facial images of patients
in the easy group and the difficult group in the training dataset increased by 3 and 9 times, respectively

Fig. 6 Learning curve for supine-side-closed mouth-base position. The black line (training) represents the training image data, and the gray line
(test) represents the test data. The learning curve of the test data follows the learning curve of the training data, indicating that the AI model is
learning properly. The AI model showed 80.5% accuracy for epochs 20
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and creating an AI model that subdivides the classifica-
tion of difficult intubation, we believe that it will be pos-
sible to create a heat map of difficult intubations with
extracted features. Our observations suggest that the
current AI model identifies easy intubation in the easy
group based on the neck.
Previous studies on the incidence of intubation diffi-

culties report a range from 5 to 27%, compared to that
of 26.7% in the present study [3, 5]. The relatively high
incidence of intubation difficulty in this study may be
due to the fact that the Cormack–Lehane classification
was performed in the absence of the BURP method and
the ramp position to provide a similar assessment to
physicians who were not familiar with the application of
airway assessment. The AUCs of the predictors of

intubation difficulty, such as the MPC, IIG, HNM,
TMD, HLM, BT, and ULBT, ranged from 0.558 [0.467–
0.649] to 0.673 [0.595–0.750]. The largest predictor
among them was the Mallampati classification. This re-
sult was also within the range of previous reports, and
the population in this study was considered to be almost
similar to those of previous studies [11–13]. The reason
the AI models resulted in a better AUC than existing
predictors of difficult intubation may be due to the fact
that the features of multiple predictors were obtained
from a single facial image. Taking the image of the
supine-side-closed mouth-base position as an example,
we believe that TMD, HLM, and BT are represented.
Another reason is that it may have captured subjective
assessments that cannot be quantified (small forehead

Table 4 AI model accuracy of fivefold cross-validation in supine-side-closed mouth-base position

Datasets 1–5 in the supine-side-closed mouth-base position were used and divided into training data and test data
The AUC was calculated for each dataset, and the 95% confidence interval, sensitivity, specificity, and precision were shown

Table 5 Values obtained from patient face images

The model with the best AUC value, in the range of 10–30 epochs, batch size 16–32, was created for each body position. Datasets 1–5 were used to divide the
data into training data and test data. For each dataset, the AUC was calculated, the median and 95% confidence interval of the AUC for that dataset are shown,
and the sensitivity, specificity, and accuracy of the median AUC are shown
**The name of dataset that produced the median AUC
*Median AUC>0.700
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and obesity). This may be of advantage in image analysis
using CNN.
The incidence of intubation difficulties in this study

was 26.7%, which led to a bias in the number of data be-
tween the easy and difficult groups. Therefore, it was dif-
ficult to create stable models using deep learning
because of the bias in the allocation of training and test
data. In addition, it was difficult to take patient face im-
ages at the same distance, which resulted in differences
in the size of the patient’s face images. To avoid these
two problems, we used the oversampling method and
transfer learning to improve the accuracy. We used
zoom in and out from 0.7 to 1.3 for image processing.
The easy group produced three images from one image
in the range of 0.7–1.3, and the difficult group produced
nine images from one image in the range of 0.7–1.3.
This method corrected the problems of sample number
bias and distance when taking the patient’s face images.
In addition, by combining transfer learning, the learning
curve of the test data followed the learning curve of the
training data, which was thought to avoid overfitting.
In previous studies, the Mallampati classification

showed an AUC of approximately 0.60, and the ULBT
showed an AUC of approximately 0.70. In this study, the
results greatly exceeded the values reported in past

studies due to the use of an AI model with a single facial
image of the patient (image taken in the supine-side-
closed mouth-base position). In addition, the modified
LEMON classification used in previous studies has been
shown to be highly sensitive to the assessment of intub-
ation difficulty, but the assessment was performed by a
physician familiar with the assessment of intubation dif-
ficulty. The sensitivity for predicting intubation difficulty
from facial images in the supine-side-closed mouth-base
position was 81.8%, suggesting that this AI model could
be a skilled physician’s eye when intubating someone
who is not familiar with the assessment of intubation
difficulty.
The diagnosis of intubation difficulty by anesthesiolo-

gists in clinical practice is more effective in the supine
position than in the seated position [28]. In this study,
facial images taken only in the supine position could
predict intubation difficulty. A model for predicting in-
tubation difficulty based on face images taken in the
seated position could not discriminate the presence or
absence of intubation difficulty.
In a previous study, the presence or absence of intub-

ation difficulty was discriminated by generating and
quantifying facial proportions (three-way images) from a
patient’s face image [29]. The study stated that the

Fig. 7 Receiver operating characteristic (ROC) curve for supine-side-closed mouth-base position. The ROC curve for discriminating intubation
difficulty using face images of the supine-side-closed mouth-base position, showing an area under the curve (AUC) of 0.864, the sensitivity of
81.8%, and specificity of 83.3%
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developed proportional model would take 15 min to
generate a single face model, which we believe is imprac-
ticable to use in emergency situations.
This study is the first to apply deep learning (CNN) to

discriminate intubation difficulty in adults. The “AI
model for intubation difficulty classification using deep
learning (convolutional neural network) with face im-
ages” created in this study can immediately identify in-
tubation difficulty and can be used in emergency
situations. In the future, we are planning to make “an
application of the AI model for intubation difficulty clas-
sification” on the basis of this constructed model.
The limitations of the research are as follows: This

study was conducted on patients who were scheduled to
undergo surgery. Therefore, it is likely that the situation
allows for easy intubation compared to the emergency
scene or the situation of an emergency ward. Given that
patients who needed devices for their difficulty in

intubation (video laryngoscope) were excluded at the be-
ginning, it is possible that some patients with difficulty
in intubation may have been excluded from the study.
The findings of this study are also unlikely to be applic-
able to pediatric intubation difficulty or congenital in-
tubation difficulty, as the AI was trained using adult
facial images [30, 31]. Older patients were often less re-
ceptive to having their faces photographed, which may
have resulted in a relatively young patient population.
Furthermore, this study was conducted only at Yamagata
University Hospital and is an AI model produced with
patient face images from a limited area.

Conclusions
In this study, an AI model was created to classify intub-
ation difficulty by deep learning (CNN) using face im-
ages. The AI model obtained from face images taken in
the supine-side-closed mouth-base position showed the

Fig. 8 Class activation heat map by Grad-CAM of easy group in supine-side-closed mouth-base position. The heat map shows the viewpoints
when the AI classifies the author’s face image (not included in the dataset) as easy to intubate, and the average RGB value image of easy
intubation in the data for inference evaluation. The viewpoints that are important for the prediction of easy intubation are red and yellow in the
heat map
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best predictive value, i.e., 80.5%. This is the first attempt
to apply deep learning (CNN) to discriminate intubation
difficulty. We believe that, in the future, a clinically use-
ful model can be created with a larger number of face
images in a larger area. If the AI model can predict

intubation difficulty using the patient’s face image, then
it can help save patients’ lives by enabling rapid requests
for assistance to physicians who are familiar with emer-
gency airway management without causing visual field
defects due to unreasonable tracheal intubation.

Fig. 9 Class activation heat map by Grad-CAM for supine-side-closed mouth-base position. These are the class activation heat maps of the easy
and difficult intubation groups in the supine-side-closed mouth-base position and their RGB value average image

Table 6 Comparison of accuracy between existing predictors of difficult intubation and the best AI model

The AUCs of the existing predictors of the difficult intubations in this study ranged from 0.558 to 0.673, and no predictor exceeded 0.700. In contrast, the best AI
model produced in this study had an AUC of 0.864, which was superior to the AUC of the predictors of difficult intubation
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