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Abstract 

Background Shift work is common in healthcare, especially in emergency and intensive care, to maintain the qual-
ity of patient care. Night shifts are linked to health risks such as cardiovascular disease, metabolic disorders, and poor 
mental health. It has been suggested that inflammatory responses due to the disruption of circadian rhythm may 
contribute to health risks, but the detailed mechanisms remain unclear. This study aimed to analyze changes in gene 
expression in whole blood of healthcare workers before and after a night shift and investigate the molecular patho-
genesis of these changes and their impact on health.

Methods This was a single-center, prospective, observational study of four medical doctors working night shifts 
in the emergency department. Blood samples from the subjects were collected before and after the night shift, 
and RNA sequencing was performed to analyze changes in gene expression in whole blood. The data obtained were 
analyzed via Ingenuity Pathway Analysis (IPA) core analysis that included canonical pathway analysis, upstream regula-
tor analysis, and functional network analysis. RNA bulk deconvolution was performed to estimate the relative abun-
dance of immune cells. The IPA analysis match feature was also used to assess similarities of gene expression patterns 
with other diseases.

Results We identified 302 upregulated and 78 downregulated genes (p < 0.05, |log2-fold change|> 0.5) as genes 
whose expression changed after the night shift. Canonical pathway analysis revealed that Toll-like receptors and other 
innate immune response pathways were activated. Upstream regulator analysis and functional network analysis 
also consistently indicated a predicted activation of innate immune and inflammatory responses. RNA bulk deconvo-
lution showed changes in the proportions of several immune cells. IPA analysis match indicated that gene expression 
patterns after night shifts were highly correlated with several diseases, including major depressive disorder, in terms 
of immune and inflammatory responses.

Conclusion The results revealed that innate immune and inflammatory responses are elicited after night shifts 
in healthcare workers and that gene expression patterns correlate with several diseases in terms of immune 
and inflammatory responses. These findings suggest that shift work may affect health risks through innate immune 
and inflammatory responses.
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Introduction
In modern society, shift work has become an essential 
form of work in many industries. It is estimated that 
20–30% of all workers in North America and Europe 
are engaged in shift work, including night shifts [1, 2]. 
Shift work is common in the medical field, especially 
in the emergency and intensive care fields, where doc-
tors, nurses, and other healthcare workers need to be 
available to patients 24  h a day to maintain the qual-
ity of patient care. Moreover, many concerns have been 
raised about the impact of shift work on health.

In recent years, the effects of night shifts and irreg-
ular work on physical and mental health have been 
widely reported. Epidemiological studies have linked 
shift work to a wide range of increased risks, includ-
ing cardiovascular disease, metabolic disorders such 
as diabetes, digestive disorders, sleep disorders, mood 
disorders, worsening mental health such as depres-
sion, and malignancies such as skin, breast, and pros-
tate cancer [3, 4]. Changes in white blood cell counts 
such as monocyte, lymphocyte, and neutrophil counts 
and increased levels of inflammatory markers such as 
C-reactive protein (CRP) and interleukin (IL)6 have 
been reported due to night work [5–7]. Circadian 
rhythm disturbances due to shift work, including night 
shifts, may affect the inflammatory response and may 
be a health risk factor, but the detailed mechanisms are 
still not fully understood.

Recently, technological advances have made it pos-
sible to perform transcriptome analysis, which uses 
RNA sequencing to comprehensively measure changes 
in gene expression and reveal the clinical phenotype 
in molecular pathology. Furthermore, previously pub-
lished RNA sequencing data are available in public 
databases, thus making it possible to compare one’s 
own research with existing studies. Such analysis is 
expected to elucidate both similarities and differences 
between different diseases, thereby contributing to a 
deeper understanding of disease mechanisms.

Few studies have conducted transcriptome analyses 
of whole blood of workers performing shift work. All of 
these previous studies have been conducted on healthy 
volunteers, and no studies have conducted whole-blood 
transcriptome analysis on actual healthcare workers or 
night shift workers.

The aim of this study was to comprehensively ana-
lyze changes in gene expression in whole blood of 
actual healthcare professionals before and after a night 

shift and to investigate the molecular pathologies that 
change after a night shift and their impact on health.

Materials and methods
Study design and participants
This single-center, prospective, observational study was 
conducted in September 2020 at the Department of 
Traumatology and Acute Critical Medicine, Osaka Uni-
versity Graduate School of Medicine. Blood samples were 
collected from four doctors working night shifts in emer-
gency and intensive care departments at 10 am on the day 
of work and at 10 am the following day after work. Age, 
sex, body mass index, and comorbidities (e.g., hyperten-
sion, diabetes, hyperlipidemia) were investigated in all 
four subjects (Fig. 1).

This study was approved by the Institutional Review 
Board of Osaka University Hospital in June 2020 in 
accordance with the principles of the Declaration of Hel-
sinki. (Approval no.: 907). Written informed consent for 
the study was obtained from the subjects at the time of 
blood sample collection.

Emergency department setting
The emergency department handles approximately 1400 
third-level emergency transports annually that deal with 
the most serious and life-threatening conditions. These 
include out-of-hospital cardiac arrest, trauma, sepsis, and 
cerebrovascular and cardiovascular emergencies. The 
department provides seamless care from initial treatment 
through intensive care management and has a 20-bed 
intensive care unit. The medical staff works on a two-
shift system, with three doctors on duty during the night 
shifts who are responsible for both initial treatment and 
intensive care management.

Assessment of fatigue
The visual analogue scale to evaluate fatigue severity 
(VAS-F) score was used to assess the subjects’ fatigue 
levels before and after the night shift. The VAS-F score 
is a relatively valid and reliable measure for subjective 
assessment of fatigue and energy levels [8]. It comprises 
18 items, divided into a 13-item fatigue subscale and 
a 5-item energy subscale. The scale is self-reported, 
and each item describes the subjects’ current state on 
a 10-point scale between two extremes, such as “not 
at all tired” to “extremely tired”. Higher scores on the 
fatigue subscale indicate greater levels of fatigue, 
whereas lower scores on the energy subscale indicate 
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lower levels of energy. Subjects were asked to complete 
the VAS-F at the time of sample collection before and 
after the night shift, and the mean scores on the fatigue 
and energy subscales before and after the night shift 
were evaluated. A paired t-test was used to evaluate 
the change in scores before and after the night shift for 
each subject.

Sample preparation, RNA isolation, library preparation, 
and RNA sequencing
Peripheral blood from each subject was subjected to total 
RNA isolation via the PAXgene™ Blood RNA System (BD 
Bioscience, San Jose, CA, USA). Full-length cDNA (com-
plementary DNA) was generated via a SMART-Seq HT 
Kit (Takara Bio, Mountain View, CA). Illumina libraries 
were prepared via a Nextera DNA Library Preparation 
Kit (Illumina) according to the SMARTer kit instructions. 
The DNA library was then converted into a library for 
DNBSEQ via an MGIEasy Universal Library Conversion 
Kit (App-A). Sequencing was performed on the DNB-
SEQ-G400RS platform (MGI Tech Co., Ltd., Shenzhen, 
China) in 2 × 100 bp paired-end mode.

RNA sequencing analysis
RNA sequencing analysis was performed as previ-
ously described [9]. The sequenced reads were mapped 
to the human reference genome sequence (hg19) via 
TopHat (version 2.1.1) in conjunction with Bowtie2 
(version 2.2.8) and SAMtools (version 0.1.18). Raw read 
counts of gene-level expression for each gene‒sample 

combination were calculated via featureCounts in the 
subread-2.0.0 package.

Statistical analysis of mRNA
Analyses were performed as previously described, with 
some modifications [9]. Integrated Differential Expres-
sion and Pathway Analysis, version 2.01 (iDEP.2.01, 
http:// bioin forma tics. sdsta te. edu/ idep/) [10] was used to 
normalize the raw mRNA (messenger RNA) count data. 
The raw counts were converted to CPM (counts per mil-
lion) on iDEP.2.01, with default settings (min. CPM 0.5, n 
libraries1), and genes with low expression were filtered. 
Log2 normalization was also performed via the EdgeR 
algorithm, with the pseudo count set to the default set-
ting of 4. To compare gene expression between subjects 
before and after the night shift, principal component 
analysis was performed: the limma-voom algorithm [11] 
was used to analyze expression variation between sub-
jects before and after the night shift. Paired tests were 
also performed for the before-shift and after-shift sam-
ples of the same subject as the corresponding paired 
samples. |Log2-fold change|> 0.5 and p < 0.05 were used 
to define differentially expressed genes (DEGs), and MA 
plots were drawn to visualize significant changes in the 
expression list.

Analysis by Ingenuity Pathway Analysis core analysis
Ingenuity Pathway Analysis (IPA, 2024 summer) (QIA-
GEN, https:// digit alins ights. qiagen. com/ produ cts- overv 
iew/ disco very- insig hts- portf olio/ analy sis- and- visua lizat 
ion/ qiagen- ipa/) was used to perform IPA core analysis to 
assess the functional characteristics of mRNA expression, 

Fig. 1 Workflow of our research

http://bioinformatics.sdstate.edu/idep/
https://digitalinsights.qiagen.com/products-overview/discovery-insights-portfolio/analysis-and-visualization/qiagen-ipa/
https://digitalinsights.qiagen.com/products-overview/discovery-insights-portfolio/analysis-and-visualization/qiagen-ipa/
https://digitalinsights.qiagen.com/products-overview/discovery-insights-portfolio/analysis-and-visualization/qiagen-ipa/
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upstream regulators of mRNAs, and functional networks 
by expression variation genes. Canonical pathway analy-
sis, upstream regulator analysis, and regulator effect 
analysis were conducted as IPA core analyses [12]. The 
p values were calculated via the Benjamini–Hochberg 
method with multiple comparison test correction [13]. 
The analysis uses z scores to predict the activation sta-
tus of canonical pathways and upstream regulators based 
on mRNA expression patterns: higher z scores indicate 
greater activation, whereas lower z scores suggest greater 
inhibition. In the present study, |z score|≥ 2, p < 0.05, was 
considered to indicate significant activation or inhibition. 
Regulator effect analysis was performed to analyze the 
functional network, which theoretically predicts down-
stream disease/function caused by DEGs and upstream 
regulators predicted from the DEGs. Consistency scores 
were calculated as a measure of how consistent the 
upstream-to-downstream functional network was with 
the published literature.

RNA bulk deconvolution analysis by CIBERSORTx
To estimate the proportions of immune cells from the 
RNA sequencing data, a deconvolution analysis was per-
formed using the web tool CIBERSORTx (https:// ciber 
sortx. stanf ord. edu/), a machine learning algorithm [14]. 
RNA sequencing data were converted into a gene expres-
sion profile matrix that was input into CIBERSORTx. We 
ran “Impute Cell Fractions” with default settings using 
the LM22 signature matrix as the reference. LM22 is a 
leukocyte gene signature matrix provided by CIBER-
SORTx that contains 547 genes identifying 22 different 
human immune cell types [15]. The output of CIBER-
SORTx lists the relative abundance of 22 immune cell 
subtypes for each sample. Among the immune cell sub-
types, changes in the proportions of neutrophils, lym-
phocytes, and monocytes were analyzed before and after 
the night shift. Lymphocytes were calculated by summing 
the percentages of naive B cells, memory B cells, plasma 
cells, CD8 T cells, naive CD4 T cells, resting memory 
CD4 T cells, activated memory CD4 T cells, follicular 
helper T cells, regulatory T cells, γδ T cells, resting natu-
ral killer (NK) cells, and activated NK cells. Paired t-tests 
were performed to analyze the percentage changes in 
estimated immune cells proportions before and after the 
night shift.

Analysis by IPA analysis match
IPA analysis match was performed to compare the simi-
larity between the IPA-analyzed core analysis results and 
the IPA-pre-analyzed core analysis results from expres-
sion data derived from public databases. To narrow down 
the core analysis results related to disease, the results 
were filtered by “human disease”, “peripheral blood”, and 

“disease vs. normal”, and a similarity analysis was per-
formed via the dataset match metric. This metric com-
pares the gene sets analyzed via IPA with pre-analyzed 
gene sets in the IPA collection to identify common genes, 
pathways, diseases, and functions. The metric quantita-
tively assesses the degree of similarity of the compared 
gene sets via z scores and p values: a higher or lower z 
score indicates a positive or negative correlation, respec-
tively, and a lower p value indicates a significant gene 
match. The top 20 diseases with similar expression lev-
els obtained from IPA analysis match were selected after 
excluding duplicate diseases. A heatmap was created for 
the selected diseases on the basis of the z scores of the 
terms for each of the three analytical metrics: canonical 
pathway, upstream regulators, and downstream effects. 
Additionally, hierarchical clustering was performed for 
each disease via the z scores of the respective terms for 
these three analytical metrics.

Validation of the results obtained by IPA
To validate the results of the canonical pathway analysis 
by IPA, pathway analysis (Kyoto Encyclopedia of Genes 
and Genomes [KEGG], Reactome) and Gene Ontol-
ogy (GO) analyses (GO biological process [GOBP], GO 
molecular function [GOMF]) of the DEGs were per-
formed via the web tool Enrichr (https:// maaya nlab. 
cloud/ Enric hr/) [16–20]. To validate the results of IPA 
analysis match, gene set enrichment analysis software 
(GSEA, v4.3.3) was used [21]. Correlations between the 
gene sets of the abovementioned diseases obtained via 
IPA analysis match and the DEGs obtained in the present 
study were evaluated. DEGs with fold change data were 
converted into pre-ranked lists and input into GSEA soft-
ware to calculate the normalized enrichment score, nom-
inal p value, and false discovery rate, which indicate the 
level of correlation.

Results
Subject characteristics
Four medical doctors participated as the study subjects. 
Their median age was 37 (interquartile range: 34.5–38.3) 
years, and their median body mass index was 22.4 (inter-
quartile range: 21.8–23.3) kg/m2. None of the subjects 
experienced any complications (Table 1).

Assessment of fatigue via VAS‑F score
The degree of fatigue in the subjects before and after 
the night shift was evaluated using the VAS-F score 
(Table  2). The fatigue subscale was significantly higher 
after the night shift than before (mean score ± SD before 
vs. after: 1.2 ± 1.4 vs. 7.4 ± 1.1, p = 0.002). The energy sub-
scale tended to be lower after the night shift than before 

https://cibersortx.stanford.edu/
https://cibersortx.stanford.edu/
https://maayanlab.cloud/Enrichr/
https://maayanlab.cloud/Enrichr/
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(mean score ± SD before vs. after: 7.1 ± 1.1 vs. 3.3 ± 2.1, 
p = 0.069). These results indicated that the subjects felt 
fatigued after the night shift.

Comparison of gene expression
Principal component analysis revealed no distinct or 
obvious differences in mRNA expression patterns before 
and after the night shift for each subject (Fig. 2a). Use of 
the limma-voom algorithm for paired analysis showed 
that the expression of 302 genes was upregulated, and 
that of 78 genes was downregulated after the night shift 
(p < 0.05 and |log2-fold change|≥ 0.5) (Fig. 2b, c).

Canonical pathway analysis
The results of RNA sequencing were submitted to IPA, 
and canonical pathway analysis was performed. Canon-
ical signaling pathways that were activated or inhibited 
after the night shift were identified and listed. Canoni-
cal pathway analysis predicted 16 pathways to be acti-
vated and one pathway to be inhibited (|z score|≥ 2; p 
value of overlap < 0.05). The top 10 pathways are shown 
in Fig. 3a. The myeloid differentiation primary response 
88 (MyD88):MyD88 adapter like protein (MAL) (Toll-
interleukin 1 receptor domain containing adaptor 

protein [TIRAP]) cascade initiated on the plasma mem-
brane had the lowest p value and was the most acti-
vated (adjusted p value = 7.8 ×  10–5; z score = 2.828). 
Other activated pathways included the regulation of 
Toll-like receptor (TLR) by endogenous ligand, TLR 
cascades, triggering receptor expressed on myeloid 
cells (TREM)1 signaling, and TLR signaling, with a 
dominant presence of pathways related to the innate 
immune response, particularly those involving TLRs.

Pathway analysis (Reactome, KEGG) and GO analy-
sis (GOBP, GOMF) were performed via the web tool 
Enrichr to validate the results of IPA (Supplemental Fig. 
S1). Enrichr analysis revealed terms similar to those 
observed in the IPA canonical pathway analysis, such as 
the regulation of TLRs by endogenous ligands and the 
MyD88:MAL (TIRAP) cascade initiated on the plasma 
membrane, supporting the results of the canonical 
pathway analysis.

Upstream regulator analysis
Upstream regulator analysis predicted 84 activated 
and 17 inhibited potential upstream regulators whose 
expression varied after the night shift (p value of over-
lap < 0.05). These top-ranked upstream regulators are 
shown in Fig. 3b. Among the activated upstream regu-
lators, inflammatory cytokines such as colony stimu-
lating factor (CSF)2, IL2, IL6, IL1b, and interferon-γ 
(IFNG); inflammation-related transcription factors 
such as signal transfer and activator of transcription 
(STAT)3 and hypoxia inducible factor (HIF)1; and 
inflammation-related signaling factors such as p38 
mitogen activated protein kinase (p38 MAPK) (fam-
ily) were identified. Transcription factors such as fork-
head box O (FOXO)1 and FOXO3 were also detected. 
Among the inhibited upstream regulators, the ubiquitin 
ligase tripartite motif containing (TRIM)26 was found.

Functional network analysis
Next, we performed regulator effect analysis and pre-
dicted functional networks based on the consistency 
score. The top five networks as ranked by consistency 
score are listed in Supplemental Table S1, and the top-
ranked network is shown in Fig. 4. The top-ranked net-
work included 13 upstream regulators, 29 DEGs, and 10 
diseases/functions. The downstream diseases/functions 
included terms such as development of phagocytes, dif-
ferentiation of antigen-presenting cells, polarization of 
macrophages, activation of dendritic cells, antimicro-
bial response, and inflammatory response of endothe-
lial cells. Many of these downstream functions were 
related to innate immune responses, including the 

Table 1 Baseline characteristics of the participants

Characteristic Subjects
(n = 4)

Age, years 37 (34.5–38.3)

Male, n (%) 4 (100%)

BMI, kg/m2, median (IQR) 22.4 (21.8–23.3)

Comorbidities, n (%)

 Diabetes 0 (0)

 Hypertension 0 (0)

 Hyperlipidemia 0 (0)

 Chronic lung disease 0 (0)

 Chronic kidney disease 0 (0)

 Immunocompromised condition 0 (0)

Table 2 Differences in the degree of fatigue using the VAS-F 
score before and after the night shift

Data are presented as the mean (SD) of the VAS-F score

p values are analyzed using the paired t-test

VAS-F, visual analogue scale to evaluate fatigue severity

Scale Before After p value

VAS-F

 Fatigue 1.2 (1.4) 7.4 (1.1) 0.002

 Energy 7.1 (1.1) 3.3 (2.1) 0.069



Page 6 of 13Nukiwa et al. Journal of Intensive Care           (2025) 13:14 

activation of phagocytes and antigen-presenting cells, 
and the inflammatory response in epithelial cells. The 
other functional networks listed in the abovementioned 
table also showed a similar trend.

RNA bulk deconvolution analysis via CIBERSORTx
The RNA sequencing data were deconvolved using CIB-
ERSORTx to analyze the changes in immune cells before 
and after the night shift for each subject. The estimated 
proportions of immune cells in each subject’s blood are 
shown as a stacked bar graph in Supplemental Fig. S2a. 
Several immune cells showed changes in proportions 
before and after the night shift. Changes in the percent-
ages of neutrophils, lymphocytes, and monocytes in each 
subject before and after the night shift are also shown in 
Supplemental Fig. S2a. The percentages of neutrophils 
tended to increase, whereas those of lymphocytes and 
monocytes tended to decrease, but the differences were 
not statistically significant.

Analysis by IPA analysis match
The top 20 diseases with the highest z scores, indicating 
the strength of correlation as determined by IPA analysis 

match, are shown in the figure, with overlapping diseases 
excluded (Fig.  5a, Supplemental Table  S2). All diseases 
showed statistically significant correlations. Interest-
ingly, major depressive disorder was most strongly cor-
related with gene expression changes before and after the 
night shift (p value = 1.1 ×  10–104; z score = 49.437). Other 
observed diseases included autoimmune diseases such 
as polyarticular or systemic juvenile idiopathic arthritis, 
rheumatoid arthritis, and systemic lupus erythematosus, 
which are highly prevalent. Additional diseases included 
malignant tumors such as lung cancer; ischemic diseases 
such as stroke and myocardial infarction; and infectious 
diseases such as pulmonary tuberculosis and pneumonia. 
Heatmap and hierarchical clustering analyses were per-
formed for each disease based on the z scores of the three 
analytical metrics: canonical pathways, upstream regula-
tors, and downstream effects (Fig. 5b). Hierarchical clus-
tering also indicated that the changes in gene expression 
before and after the night shift and the gene set of major 
depressive disorder were the closest, with similar z scores 
on the heatmap, suggesting a high degree of correlation.

To validate the results of the IPA analysis match, the 
top six diseases with high similarity were examined for 

Fig. 2 Characteristics of changes in mRNA expression before and after the night shift. a Principal component analysis comparing mRNA expression 
before and after the night shift. The same color indicates the same subject, with triangles indicating before the night shift, and circles indicating 
after the night shift. b Gene expression changes occurring after the night shift (p < 0.05, |log2-fold change|> 0.5). The mRNA expression of 302 
genes increased, and that of 78 genes decreased after the night shift. c The colored dots indicate genes with variable expression (p < 0.05, |log2-fold 
change|> 0.5). The red dots indicate upregulated genes, and the blue dots indicate downregulated genes
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Fig. 3 Canonical pathway analysis and upstream regulator analysis. a Top 10 canonical signaling pathways that fluctuated after the night shift 
were identified via Ingenuity Pathway Analysis (IPA). The bars represent z scores, and the line graphs represent logarithmically adjusted p values 
associated with each pathway. b Upstream regulators predicted after the night shift identified via IPA. The left graph shows the top 20 upstream 
regulators predicted to be activated after the night shift. The right graph shows the top 17 upstream regulators predicted to be inhibited 
after the night shift. The bars indicate the logarithm of the overlap of the p values of the transcriptional regulators, and the line graphs indicate the z 
values
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gene expression correlations via GSEA software. All dis-
eases were significantly highly correlated (Supplemental 
Fig. S3).

Discussion
In this study, whole-blood RNA sequencing was per-
formed before and after the night shift in four physicians 
working the night shift to investigate changes in gene 
expression. Principal component analysis showed differ-
ences in mRNA expression patterns between the subjects. 
As paired tests were conducted on the same subjects 
before and after the night shift, and the downstream 

analysis was performed using only statistically signifi-
cant DEGs, the influence of inter-subject differences was 
considered to be minimal. IPA core analysis was con-
ducted, and canonical pathway analysis, upstream regula-
tor analysis, and functional network analysis consistently 
showed that innate immune responses and inflamma-
tory reactions were activated after the night shift. RNA 
bulk deconvolution also showed changes in the propor-
tions of several immune cells. In addition, IPA analysis 
match revealed that gene expression patterns after the 
night shifts were highly correlated with several diseases, 
including major depressive disorder.
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Fig. 5 Other diseases showing similar expression patterns to those of DEGs after the night shift. The data were analyzed via analysis match 
of Ingenuity Pathway Analysis via dataset match metrics. a The top 20 z scores for the strength of correlation are shown. Bars indicate p values, 
and line graphs indicate z scores. b Heatmaps and hierarchical clustering of three analytical metrics—canonical pathway, upstream regulators, 
and downstream effects—in the top 20 other diseases showing similar expression patterns to those of DEGs after the night shift. The vertical 
columns indicate the terms for each canonical pathway, upstream regulators, and downstream effects. The horizontal column lists 20 diseases 
and their DEGs before and after the night shift. The DEGs before and after the night shift are highlighted in pink. The heatmap shows the z score 
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(See figure on next page.)
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Fig. 5 (See legend on previous page.)
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Relationship between shift work and inflammatory 
response in existing studies
Previous studies have reported increases in inflammatory 
markers such as CRP and IL6 after night shift work [5–7]. 
Night shifts have also been associated with changes in 
white blood cell counts, such as monocyte, lymphocyte, 
and neutrophil counts [22, 23], and these changes have 
been reported to be more pronounced in workers who 
work more frequent and consecutive night shifts [24].

Atwater et  al. reported that in addition to elevated 
inflammatory cytokines and increased leukocytes, the 
level of lipopolysaccharide-binding protein was also 
elevated after night shifts. They concluded that shift 
work, sleep deprivation, stress, and circadian rhythm 
disturbances may increase intestinal permeability and 
lipopolysaccharide-binding protein by transferring 
lipopolysaccharide into the blood, thus contributing to 
an enhanced innate immune response and inflammatory 
response [25].

Several studies have used transcriptome analysis of 
peripheral blood and peripheral blood mononuclear cells 
in experiments in which healthy volunteers were placed 
in a simulated night shift environment to analyze sleep 
deprivation, such as that caused by shift work and jet 
lag. Disruption of circadian rhythms, such as through 
sleep deprivation and shift work, alters the expression 
rhythm of clock-related genes, reducing their expression 
amplitude and altering the expression of genes involved 
in innate immune responses and inflammation, such as 
MAL, TREM1, IL6, and STAT3 [26–28].

Results of the IPA core analysis and RNA bulk 
deconvolution
In this study, the most activated pathway in the canoni-
cal pathway analysis was the MyD88:MAL (TIRAP) 
cascade initiated on the plasma membrane. MyD88 is 
an adaptor protein that signals downstream of pattern-
recognition receptor TLRs expressed on macrophages 
and dendritic cells and is involved in the initiation of 
TLR-mediated innate immune responses. Other innate 
immune response-related pathways, such as TLR-related 
pathways, are also activated.

Upstream regulator analysis also suggested that the 
potentially activated upstream regulators included 
inflammatory cytokines such as CSF2, IL2, IL6, IL1b, and 
IFNG; inflammation-related transcription factors such 
as STAT3 and HIF-1; and inflammation-related signal-
ing factors such as p38 MAPK, indicating that upstream 
regulators related to the innate immune response and 
inflammatory response factors were activated.

Functional network analysis predicted the differen-
tiation, maturation, and activation of phagocytes such 
as macrophages, dendritic cells, and antigen-presenting 

cells, as well as immune responses in epithelial cells, and 
predicted functional changes centered on innate immune 
responses.

In summary, IPA core analysis that included canoni-
cal pathway analysis, upstream regulator analysis, and 
functional network analysis consistently indicated that 
inflammatory responses centered on innate immune 
responses are elicited after the night shift.

In addition, we performed RNA bulk deconvolution 
to estimate the proportions of immune cells from the 
gene expression results and found that the proportions 
of immune cells changed before and after the night shift. 
The results of IPA core analysis and RNA bulk decon-
volution were consistent with those of previous studies 
[22–24, 26–28].

These results showed that the changes in gene expres-
sion related to innate immune and inflammatory 
responses and those in immune cell proportions were 
observed after the night shift in actual healthcare work-
ers working the night shift.

Relationships between shift work and other diseases 
according to existing studies
With respect to shift work and health risks, epidemio-
logical studies have reported an association between 
shift work and metabolic diseases such as type 2 diabetes, 
coronary artery disease, stroke, certain types of cancer, 
mental disorders such as depression, and autoimmune 
diseases [3, 4].

A meta-analysis assessing the impact of shift work on 
mental health revealed that shift work was associated 
with a 1.28-fold increased risk of mental health deteriora-
tion in general and a 1.33-fold increased risk of depres-
sion in particular. The combined effects of circadian 
rhythm disturbances, sleep deprivation, and other factors 
are considered to be the cause [29].

Approximately one-third of depressed patients have 
elevated inflammatory markers even in the absence of 
medical illness, and patients with inflammatory diseases 
and those receiving cytokine therapy, such as interferon, 
are more likely to develop depression [30, 31]. Inflamma-
tory mediators affect neurotransmission and neuroendo-
crine function and may contribute to the pathophysiology 
of depression [32]. These findings suggest that depression 
and inflammation may bidirectionally influence each 
other.

Results of the IPA analysis match
In this study, IPA analysis match was used to iden-
tify diseases with similar gene expression patterns to 
those observed after night shifts, and interestingly, 
major depressive disorder had the highest correlation. 
Other diseases showing correlations were autoimmune 



Page 11 of 13Nukiwa et al. Journal of Intensive Care           (2025) 13:14  

diseases, malignant tumors, ischemic diseases, and infec-
tious diseases. Heatmap and hierarchical clustering anal-
yses were performed for each disease based on z scores 
of the three analytical metrics. Hierarchical clustering 
analysis indicated that changes in gene expression after 
the night shift and major depressive disorder were the 
most closely related. The heatmaps showed similarities in 
the colors of the z scores related to the innate immune 
response and the inflammatory response. These findings 
suggest that gene expression changes after a night shift 
are correlated with major depressive disorder in terms of 
the innate immune response and inflammatory response.

Previous studies have shown that shift work increases 
the risk of depression and that depression is related to the 
inflammatory response. In terms of the gene expression 
variation in the present study, the results suggest that 
shift work may increase the expression of genes related to 
innate immune responses and inflammation and poten-
tially increase the risk of depression.

Implications of the study findings
This study examining changes in gene expression in the 
blood of healthcare workers before and after the night 
shift work revealed that the innate immune response and 
inflammatory response are elicited after night shift work. 
In addition, gene expression changes before and after the 
night shift were correlated with gene expression changes 
in major depressive disorder and several other diseases, 
suggesting that shift work may affect health risks through 
innate immune and inflammatory responses. The find-
ings of this study may provide a basis for future research 
on shift work and health risks, including major depres-
sive disorder.

Strengths and limitations
The present study has several strengths. Relatively few 
studies have conducted transcriptome analyses of whole 
blood from shift workers. Further, all previous reports 
were conducted on healthy volunteers in simulated night 
shift or sleep deprivation environments. To the best of 
our knowledge, this is the first report of whole-blood 
transcriptome analysis and gene expression analysis con-
ducted in actual healthcare workers working the night 
shift and is also the first study to analyze similarities and 
correlations with other diseases via IPA analysis match.

The present study also has several limitations. First, 
this study was exploratory in nature and included a small 
sample size. The small sample size and homogeneity of 
the participants, who were all doctors from a single insti-
tution with similar backgrounds (e.g., gender, age, race, 
and job descriptions), may have introduced selection 
bias, which potentially limits the generalizability of the 
findings to broader populations. The insufficient sample 

size also reduced the statistical power, which could lead 
to overinterpretation or underestimation of the results. 
Second, the VAS-F score used in this study to evalu-
ate the subjects’ level of fatigue is a self-reported type of 
subjective evaluation, and the criteria for evaluating the 
degree of fatigue may differ from subject to subject. How-
ever, this study evaluated the change in each subject’s 
level of fatigue before and after the night shift, and the 
effect of differences in the way each subject felt fatigued 
was considered minimal. Third, this study did not assess 
working conditions (e.g., stress, busyness, breaks, sleep-
ing time), so other factors may have influenced the 
results. Fourth, only changes in gene expression were 
assessed one at a time before and after the night shift, 
and owing to the short observation period, the long-
term effects are unclear. Fifth, the analysis methods are 
limited. RNA sequencing and IPA were the main meth-
ods used in this study, but a more comprehensive under-
standing could be achieved by analyzing blood markers 
and combining other analysis methods. Finally, although 
this study described a possible association with several 
diseases, including major depressive disorder, on the 
basis of similarities in gene expression changes, no other 
validation has been conducted, and the actual associa-
tions are unknown. Therefore, larger, long-term studies, 
integrated approaches using multiple analytical methods, 
and intervention studies are desirable to further validate 
these results.

Conclusion
We examined gene expression changes in whole blood 
before and after the night shift in healthcare workers and 
showed that innate immune and inflammatory responses 
are elicited after the night shift. The present findings sug-
gest that shift work may affect health risks through innate 
immune and inflammatory responses. Further studies are 
warranted to confirm these findings.
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